Ir al contenido principal

Evolución de los seres vivos

Hola de nuevo a todos , hoy voy a hacer una entrada acerca de las mutaciones en el ser humano , prestar atención porque es un tema interesante .
La pregunta clave es la siguiente :


¿Influyen las mutaciones en el ser humano?


Primero , ¿ qué es una mutación?:es el cambio en la secuencia de un nucleótido o en la organización del ADN (genotipo) de un ser vivo ​ que produce una variación en las características de este y que no necesariamente se transmite a la descendencia. Se presenta de manera espontánea y súbita o por la acción de mutágenos. Este cambio estará presente en una pequeña proporción de la población (variante) o del organismo (mutación). La unidad genética capaz de mutar es el gen, la unidad de información hereditaria que forma parte del ADN.

En los seres pluricelulares, las mutaciones solo pueden ser heredadas cuando afectan a las células reproductivas. Una consecuencia de las mutaciones puede ser, por ejemplo, una enfermedad genética. Sin embargo, aunque a corto plazo pueden parecer perjudiciales, las mutaciones son esenciales para nuestra existencia a largo plazo. Sin mutación no habría cambio, y sin cambio la vida no podría evolucionar


Tipos de mutaciones según sus consecuencias :

Las consecuencias fenotípicas de las mutaciones son muy variadas, desde grandes cambios hasta pequeñas diferencias tan sutiles que es necesario emplear técnicas muy desarrolladas para su detección.

Mutaciones morfológicas

Afectan a la morfología del individuo, a su distribución corporal. Modifican el color o la forma de cualquier órgano de un animal o de una planta. Suelen producir malformaciones. Un ejemplo de una mutación que produce malformaciones en humanos es aquella que determina la neurofibromatosis. Esta es una enfermedad hereditaria, relativamente frecuente (1 en 3.000 individuos), producida por una mutación en el cromosoma 17 y que tiene una penetrancia del 100 % y expresividad variable. Sus manifestaciones principales son la presencia de neurofibromas, glioma del nervio óptico, manchas cutáneas de color café con leche, hamartomas del iris, alteraciones óseas (displasia del esfenoide, adelgazamiento de la cortical de huesos largos). Con frecuencia hay retardo mental y macrocefalia.
Resultado de imagen de mutaciones morfologicas

Mutaciones letales y deletéreas

Son las que afectan la supervivencia de los individuos, ocasionándoles la muerte antes de alcanzar la madurez sexual. Cuando la mutación no produce la muerte, sino una disminución de la capacidad del individuo para sobrevivir y/o reproducirse, se dice que la mutación es deletérea. Este tipo de mutaciones suelen producirse por cambios inesperados en genes que son esenciales o imprescindibles para la supervivencia del individuo. En general las mutaciones letales son recesivas, es decir, se manifiestan solamente en homocigosis o bien, en hemicigosis para aquellos genes ligados al cromosoma X en humanos, por ejemplo.
Resultado de imagen de mutaciones letales y deletéreas

Mutaciones condicionales

Las mutaciones condicionales (incluidas las condicionalmente letales) son muy útiles para estudiar aquellos genes esenciales para la bacteria. En estos mutantes hay que distinguir dos tipos de condiciones:
condiciones restrictivas (también llamadas no-permisivas): son aquellas condiciones ambientales bajo las cuales el individuo pierde la viabilidad, o su fenotipo se ve alterado, debido a que el producto afectado por la mutación pierde su actividad biológica.
condiciones permisivas: son aquellas bajo las cuales el producto del gen mutado es aún funcional.
Resultado de imagen de mutaciones condicionales

Mutaciones bioquímicas o nutritivas

Resultado de imagen de mutaciones bioquímicas o nutritivasSon los cambios que generan una pérdida o un cambio de alguna función bioquímica como, por ejemplo, la actividad de una determinada enzima. Se detectan ya que el organismo que presenta esta mutación no puede crecer o proliferar en un medio de cultivo por ejemplo, a no ser que se le suministre un compuesto determinado.​ Los microorganismos constituyen un material de elección para estudiar este tipo de mutaciones ya que las cepas silvestres solo necesitan para crecer un medio compuesto por sales inorgánicas y una fuente de energía como la glucosa. Ese tipo de medio se denomina mínimo y las cepas que crecen en él se dicen prototróficas. Cualquier cepa mutante para un gen que produce una enzima perteneciente a una vía metabólica determinada, requerirá que se suplemente el medio de cultivo mínimo con el producto final de la vía o ruta metabólica que se encuentra alterada. Esa cepa se llama auxotrófica y presenta una mutación bioquímica o nutritiva.

Mutaciones de pérdida de función

Las mutaciones suelen determinar que la función del gen en cuestión no se pueda llevar a cabo correctamente, por lo que desaparece alguna función del organismo que la presenta. Este tipo de mutaciones, las que suelen ser recesivas, se denominan mutaciones de pérdida de función. Un ejemplo es la mutación del gen hTPH2 que produce la enzima triptófano hidroxilasa en humanos. Esta enzima está involucrada en la producción de serotonina en el cerebro. Una mutación (G1463A) de hTPH2 determina aproximadamente un 80 % de pérdida de función de la enzima, lo que se traduce en una disminución en la producción de serotonina y se manifiesta en un tipo de depresión llamada depresión unipolar.

Mutaciones de ganancia de función

Cuando ocurre un cambio en el ADN, lo más normal es que corrompa algún proceso normal del ser vivo. Sin embargo, existen raras ocasiones donde una mutación puede producir una nueva función en el gen, generando un fenotipo nuevo. Si ese gen mantiene la función original, o si se trata de un gen duplicado, puede dar lugar a un primer paso en la evolución. Un caso es la resistencia a antibióticos desarrollada por algunas bacterias (por eso no es recomendable abusar de algunos antibióticos, ya que finalmente el organismo patógeno irá evolucionando y el antibiótico no le hará ningún efecto).
Mutaciones cromosómicas
Las mutaciones cromosómicas son modificaciones en el número total de cromosomas, la duplicación o supresión de genes o de segmentos de un cromosoma y la reordenación del material genético dentro o entre cromosomas.
Pueden ser vistas al microscopio, sometiendo a los cromosomas a la “técnica de bandas”. De esta manera se podrá confeccionar el cariotipo.

Aneuploidía

La alteración en el número de cromosomas es denominada aneuploidía. La aneuploidía se define como la pérdida o ganancia de cromosomas completos en un individuo. Este fenómeno puede ocurrir en cualquiera de los cromosomas autosómicos (del 1 al 22) o sexuales (X e Y).
La ganancia de un cromosoma completo en una célula es denominada trisomía(2n+1), y en ese caso el cariotipo del individuo estaría formado por 47 cromosomas. Probablemente la trisomía más conocida sea el Síndrome de Down (trisomía del cromosoma 21). La pérdida de un cromosoma es denominada monosomía(2n-1) y el número de cromosomas de cada célula sería 45. La única monosomía viable en los humanos es la del cromosoma X, que origina en los individuos que la padecen el Síndrome de Turner.
En las células somáticas hay un mecanismo que inactiva a todos los cromosomas X menos uno, la ganancia o perdida de un cromosoma sexual en genoma diploide altera el fenotipo normal, dando lugar a los síndromes de Klinefelter o de Turner, respectivamente.
Tal variación cromosómica se origina como un error aleatorio durante la producción de gametos. La no disyunción es el fallo de los cromosomas o de las cromatidas en separarse y desplazarse a los polos opuestos en la meiosis. Cuando esto ocurre se desbarata la distribución normal de los cromosomas en los gametos. El cromosoma afectado puede dar lugar a gametos anormales con dos miembros o con ninguno. La fecundación de estos con un gameto haploide normal da lugar a zigotos con tres miembros (trisomía) o con solo uno (monosomía) de este cromosoma. La no disyunción da lugar a una serie de situaciones aneuploides autosómicas en la especie humana y en otros organismos.

Síndrome de Klinefelter

El síndrome de Klinefelter se considera la anomalía gonosómica más común en los humanos. Los afectados presentan un cromosoma “X” supernumerario lo que conduce a fallo testicular primario con infertilidad e hipoandrogenismo. A pesar de la relativa frecuencia del padecimiento en recién nacidos vivos, se estima que la mitad de los productos 47, XXY se abortan de manera espontánea.
Resultado de imagen de sindrome de klinefelter

Síndrome de Turner

El síndrome de Turner o Monosomía X es una enfermedad genética caracterizada por presencia de un solo 'cromosoma X'. La falta de cromosoma Y determina el sexo femenino de todos los individuos afectados, y la ausencia de todo o parte del segundo cromosoma X determina la falta de desarrollo de los caracteres sexuales primarios y secundarios. Esto confiere a las mujeres que padecen el síndrome de Turner un aspecto infantil e infertilidad de por vida.


Resultado de imagen de sindrome de turner

Mutaciones cromosómicas y cáncer

La mayoría de los tumores contienen varios tipos de mutaciones cromosómicas. Algunos tumores se asocian con deleciones, inversiones o translocaciones específicos.
  1. Las deleciones pueden eliminar o inactivar los genes que controlan el ciclo celular;
  2. Las inversiones y las translocaciones pueden causar rupturas en los genes supresores de tumores, fusionar genes que producen proteínas cancerígenas o mover genes a nuevas ubicaciones, donde quedan bajo la influencia de diferentes secuencias reguladoras.
  • El papel de las mutaciones en el cáncer:
Las mutaciones en los genes regulatorios claves (los supresores de tumor y los protooncogenes) alteran el estado de las células y pueden causar el crecimiento irregular visto en el cáncer. Para casi todos los tipos de cáncer que se han estudiado hasta la fecha, parece que la transición de una célula sana y normal a una célula cancerosa es una progresión por pasos que requiere cambios genéticos en varios oncogenes y supresores de tumor diferentes. Esta es la razón por la cual el cáncer es mucho más prevalente en individuos de edades mayores. Para generar una célula cancerosa, una series de mutaciones deben ocurrir en la misma célula. Ya que la probabilidad de que cualquier gen sea mutado es muy baja, es razonable decir que la probabilidad de varias mutaciones en la misma célula es aún más improbable
Imagen relacionada

Mutaciones genómicas o numéricas


La trisomía en el par cromosómico 21 en los humanos ocasiona el Síndrome de Down
Son las mutaciones que afectan al número de cromosomas o todo el complemento cromosómico (todo el genoma). 
  • Poliploidía: Es la mutación que consiste en el aumento del número normal de “juegos de cromosomas” . Los seres poliploides pueden ser autopoliploides, si todos los juegos proceden de la misma especie, o alopoliploides, si proceden de la hibridación, es decir, del cruce de dos especies diferentes.
  • Haploidía: Son las mutaciones que provocan una disminución en el número de juegos de cromosomas.
  • Aneuploidía: Son las mutaciones que afectan solo a un número de ejemplares de un cromosoma o más, pero sin llegar a afectar al juego completo. Las aneuploidías pueden ser monosomías, trisomías, tetrasomías, etc, cuando en lugar de dos ejemplares de cada tipo de cromosomas, que es lo normal, hay o solo uno, o tres, o cuatro, etc. Entre las aneuploidías podemos encontrar diferentes tipos de trastornos genéticos en humanos como pueden ser:
    • Trisomía 21 o Síndrome de Down que tienen 47 cromosomas.
    • Trisomía 18 o Síndrome de Edwards. También tienen 47 cromosomas.
    • Trisomía 13 o Síndrome de Patau.
    • Monosomía X o Síndrome de Turner.
    • Trisomía sexual XXX o Síndrome del triple X.
    • Trisomía sexual XXY o Síndrome de Knefelter.
    • Trisomía sexual XYY o Síndrome del doble Y.

Espero que os haya servido de información , en resumidas cuentas , las mutaciones SI afectan a los seres humanos y de que manera , os dejo aquí un vídeo resumido explicando un poco esto y unas imágenes:


Comentarios

Entradas populares de este blog

Ingienería genética

Buenas tardes a todos mis seguidores , hoy voy a hablar sobre un tema curioso que os habéis  preguntado alguna vez seguro , la gran pregunta es : ¿Se pueden combinar los genes entre especies ? La respuesta es sencilla y es  no ,(pero entre los animales que viven en el mismo lugar puede haber algún caso) , debido a que deben tener más o menos el mismo número de cromosomas, ser compatibles... En el óvulo existe una zona, la zona vitelina, llamada zona pelúcida en los mamíferos, que se encarga del reconocimiento del espermatozoide.  Se tiene que producir reconocimiento entre la membrana del espermatocito y la cubierta del oocito (se llama oocito al gameto femenino aún no fecundado, cuando se fecunda es óvulo).  Para la fecundación tiene que haber reconocimiento de membrana. En la membrana del espermatozoide encontramos la fertilina. Esta aparece cuando ocurre en el esperma la reacción acrosómica. La glicoproteína (fertilina) tiene un lugar de reconocimiento que reconoce la membrana